
www.manaraa.com

DOCUMENT RESUME

ED 388 277 IR 017 426

AUTHOR
TITLE

Muldner, Tomasz
Rapid Prototyping of Computer-Based Presentations
Using NEAT, Version 1.1.

PUB DATE 94
NOTE 8p.; In: Educational Multimedia and Hypermedia, 1994.

Proceedings of ED-MEDIA 94--World Conference on
Educational Multimedia and Hypermedia (Vancouver,
British Columbia, Canada, June 25-30, 1994); see IR
017 359.

PUB TYPE Reports Descriptive (141) Speeches/Conference
Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Authoring Aids (Programming); Computer Literacy;

Computer Mediated Communication; *Computer Software
Development; *Courseware; *Electronic Publishing;
Electronic Text; *Hypermedia; Information Storage;
Information Technology

IDENTIFIERS *Links (Indexing); Prototypes

ABSTRACT
NEAT (iNtegrated Environment for Authoring in

ToolBook) provides templates and various facilities for the rapid
prototyging of computer-based presentations, a capability that is
lacking in current authoring systems. NEAT is a specialized authoring
system that can be used by authors who have a limited knowledge of
computer systems and no programming experience; these authors can
communicate with other members of the authoring team using
annotations, hypertext links and highlighting. Basic principles of
the NEAT design include: maintenance of the book structure, automatic
creation of computerized drills using templates for different
quest.on types, support for reusability through storage capabilities,
a clear display of the final product, user-friendliness, and the
ability to inspect scripts and properties of neatware objects.
Computer-based presentation developed with NEAT is called neatware.
Neatware is a specific type of courseware, based on a book metaphor.
Features of neatware include multiple views of the same material, an
electronic index, footprints showing student progress, margin and
"global" notes, electronic bookmarks, a storage list of previously
used pages, hypertext links for non-linear reading, electronic text
highlighting, examples, and examples. The user can develop neatware
by creating an outline of chapters, sections and pages; various
operations can be performed through the Control Panel. The
implementation of NEAT is based on a tree data structure in a single
text field. (Contains eight references.) (AEF)

* Reproductions supplied by EDRS are the best that can be made
* from the original document.

www.manaraa.com

Rapid Prototyping of Computer-Based Presentations
using NEAT, Version 1.1

Tomasz Miildner
Jodrey School of Computer Science

Acadia University, Wolfville, Nova Scotia, BOP 1X0, Canada
email: tomasz.muldner@acadiau.ca

Abstract: NEAT, which stands for iNtegrated Environment for Authoring in
ToolBook provides templates and various facilities for the rapid prototyping of
computer-based presentations. Outlines of the presentations can be created and

. modified. NEAT supports reusability by allowing the author to store graphics
objects and entire pages in a repository, and to retrieve them when needed. Finally,
NEAT provides support for communication between members of the authoring
team and between the team and the learners.

l Introduction

U.S. DEPARTMENT OF EDUCATION
Office Of Educahonal Research and Improvement
EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
r Th.5 document has been reproduced as

receherd I rom the person or orgamtabon
Or9nahng

C Mrnor changes have been made lo .mprove
,eproductIon guahly

Pchnts of v$ew or ooduons slated in this dOCu-
men! dO not necessarily represent officral
OE RI CrOSII.On or pohCy

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Gary H. Marks

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

Authoring systcms have been used for many years and a number of interesting applications (courseware) have
been developed, see IMAU90, ALE9l]. However, currently existing authoring systems seem to be quite weak
in the support for the following areas:

availability of tools for rapid prototyping
reusability of concepts and objects, such as graphic objects
hypertext and hypermedia facilities
support for building meta-tools, such as icons to execute macros
extendibility.

While the author is provided with considerable support at the microscopic level, for example
specialized editors that arc used to create a single frame, text, graphics or animation to appear in this frame,
there is little support at a macroscopic level. Thus, it is not possible to prototype courseware and leave details
for future development. Another important deficiency of the current authoring systems is that the authoring
team has to make an early decision as to what the level of expertise of the expected audience is. For example,
there may be beginning learners who do not have any knowledge of the subject, and other learners who have
some, or advanced knowledge. The advanced learner would find it boring to go over the entire material
necessary for the beginning learner, but may require additional information that is not made available to the
beginner. Thus, it would be useful to provide different views of the same material so that each learner can find
a view appropriate for his or her background.

Most, if not all, existing authoring systems do not separate the creation and maintenance of the
knowledge base, and the presentation of this knowledge (for the description of the second generation of
authoring systems, see [MER89]). Members of an authoring team represent different expertise and abilities to
work on the development of computer based presentations. Very often there is no single author who creates
courseware. Instead, there is an authoring team, whose members represent various types of expertise. For
example, onc member of the team may be a subject-area expert, with an ultimate knowledge of the subject on
which courseware is to be developed. This expert may have limited knowledge or time to actually develop
courseware. Other members of the team may be designers, specialists in learning strategies, and programmers;

403

2
REST nnav Al/All ARI

www.manaraa.com

for example, programmers specializing in graphics, animations, or multimedia. Only stoject-area experts
know what should be included in courseware, and so they should prototype this courseware. This prototype can
be further refined and modified by other members of the authoring team, provided that there is a simple and
effective way of communicating ideas between various members of the team.

NEAT is a specialized authoring system designed to alleviate some of the problems described above.
Version 1.0 provided limited support for views and question templates, see [MAY93]. Here, we describe
NEAT 1.1, designed and implemented by the author of this paper in the summer of 1993. NEAT can be used
by authors who have a very limited knowledge of computer systems and no programming experience. These
authors can communicate with other members of the authoring team using annotations, hypertext links and
highlighting. Computer-based presentation developed with NEAT is called neatware. NEAT is a Tool Book
application (Tool Book is produced by Asymetrix), and neatware, produced with NEAT is an application that
can be executed with the Tool Book run-time system.

The rest of this paper is organized as follows. First, in S.iuii 2 we describe neatware. Then, in
Section 3 we describe NEAT, and in Section 4 prototyping with NEAT. Section 5 briefly describes the
implementation of NEAT, and the Conclusion presents several examples of neatware.

2 NEATWARE

Neatware is a specific type of courseware, based on a book metaphor. However, neatware can consist
of multiple views, for example a beginner view and an expert view. One can think of these views as separate
books, and the user can switch between various views. As in a traditional book, each view consists of chapters,
a table of contents, and an index. Each chapter consists of sections and pages; a section consists of pages and
sections.

As in the real world the appearance of these books can be altered in several ways by the reader during
the learning process. Notes can be kept separate from the book, traditionally in a notebook, known as global
notes. Notes can be also kept on each page being read, traditionally in the margin of the page, and therefore
known as margin notes. Bookmarks may be placed in various pages of the book. Words on each page can be
highlighted, in one of several colors.

Unlike in traditional books, an electronic book has other worthwhile features. Example pages and
windows can be accessed from various pages, possibly with a choice of the user's preference of example type
(e.g. Pascal, C or Modula-2 example), providing more insight into specific details of the ncatware. As each
page is read, its name is stored in a list known as the history, which the reader can use to return to recently
visited pages. Hypertext links can be used to move around in the book, moving the user to information which
may be more relevant. Also, the table of contents contains bread crumbs, or footprints, which show which
pages of the book have already been read. Of course, neatware also includes various navigation tools io allow
the reader to change pages and access all of the above features.

In summary, each neatware has the following characteristics:
multiple views of the same material; each view consists of chapters; chapters consist of pages
electronic index which can be modified by the user
bread crumbs (or footprints), showing thc progress of the student
margin notes that appear on each page
global notes that resemble a sheet of paper attached to the book
electronic bookmarks which can be used to save references to the selected pages
history, showing the list of pages most recently visited by the user
hypertext links which can bc used to read thc material in a non-linear fashion
electronic highlighting of the selected text
examples which can appear on every page. Each example is associated with the button and can be
activated by the learner by clicking on this button. There are three kinds of examples: an example which
appears on a separate page; an example which appears in a window on the same page; and an example
which can have several appcaances, depending on preference that can be selected by thc learner (the
user's preference may be based on his or her knowledge when studying the book, for example, on
knowledge of Pascal or FORTRAN whcn studying C) .

a repository of examples with a hierarchical structure. These examples can be modified by the user. A
sample neatware page is shown in Figure 2.1.

404

www.manaraa.com

Drugs and Akobol Abuse
helpElle Setup Navigation loots &int

)I Sample Page

4- 4Univorshy

Fig. 2.1 A sample page.

At the bottom of the page, there are
various icons, used to navigate through
neatware, using one of many navigational
features and tools provided by NEAT. In
Fig. 2.1 icons represent respectively (from
left to right) the page number icon, the
table of contents icon, the index icon, the
global notes icon, the local notes icon, the
highlight icon, the hypertext icon, the
view icon, the RETURN icon, the slider
icon, and the previous and the next page
icons. Menus are provided at the top of
the page. Menus are used to perform
actions such as "bookmark a page", or
"save neatware".

In the rest of this section, we
describe two tools used for the
communication between the various
members of the authoring team and

between authors and learners, that is hypertext links and annotations. For more details of neatware, see
[MUL93a].

2.1 Hypertext Links

Hypertext means a non-linear or associative structure of pieces of text. Pages in neatware may have text which
includes the so called hypertext links, which arc mouse-sensitive text phrases. When such a link is clicked with
the mouse, the uscr is moved to another piece of text, or another page. To help the user find hypertext links,
thcy are underlined. There are three kinds of hypertext links:

help hotword, underlined in blue; produces a window on the same screen
forward reference, underlined in red; move the reader forwards
backward reference, underlined in green; move the reader backwards.

Hypertext links can be created and modified during the development of neatware. Thus, some of them
can be used for the communication between members of the authoring team, while others can be left for the
learners. Neatware hypertext links can also be created and modified by learners.

2.2 Annotations

Annotations arc used by the user (both the author and the learner) to highlight important, or difficult sections
of courseware. Neatware provides the following types of annotations:

highlighting. A part of the text on the current page can be selected and highlighted by coloring it with one
of the available colors. Unlike conventional highlighting, this highlighting can be removed
margin notes, similar to those made on the margin of the page. In version 1.1, margin notes can be stored
in both a text and a sound form
bookmarks, which are labels that can bc associated with the selected pages. These labels are texts defined
at the time the bookmark is created. The user can use existing bookmarks to move to the corresponding
pages, add new bookmarks and remove the existing bookmarks. A special bookmark is used when the user
quits neatware. This bookmarks stores the current time and date and it can be used to return to the point
from which the book was exited
hookmarked notes, which combine bookmarks with margin notes
global notes, similar to those made on separate sheets of paper, and attached to the book.

The next section briefly describes main features of NEAT.

405
BEST COPY AVAILABLE

www.manaraa.com

3 NEAT

The basic principles of the design of NEAT are:
maintenance of the book structure (that is the structure of chapters, sections, etc.) is transparent to the
user. Thus, the user can insert, delete, copy and move chapters, sections, and pages without having to
modify any of the navigation tools, such as "go to the next page"
automatic creation of computerized drills using templates for six types of questions; multiple choice, fill in
the blanks, numeric analysis, position analysis, matching and textual analysis
support for reusability by allowing the user to store objects and pages for future use
th3 development tools do not shoW up in neatware, so that the user working with NEAT has a clear idea as
to what the final product will look like. For this reason, NEAT consists of a series of menus that are used
by the user in order to create pages, objects on these pages, etc.
the user has to switch to the Tool Book's author mode as rarely as possible
from NEAT, the user can inspect scripts and properties of ncatware objects.

There are three tools to support reusability:
graphics library stores graphic objects. The library browser provides two interfaces to the set of objects
stored in the library; textual and visual interfaces. The textual interface is in the form ofa list of names of
all existing objects. The visual interface allows the user to traverse the list of all objects, stored in iconized
forms
shelves store pages. For each type of a page, there is a separate shelf. When the user removes a page, it
can be stored on a shelf, rather than completely removed. The user can copy or move pages from a shelf
into neatware. Shelves are limited to a single book, that is the user can not copy pages from a shelf stored
in one neatware into another neatware
desks store pages. Desks are similar to shelves, but they can be used for moving pages between different
neatware.

The user can work on at most one neatware at any given time, but it is possible to switch between
various neatware. Thus, the user can leave neatware in a certain stage of development, and continue this
development at a later time. More details of the NEAT environment are described in [MU1.93b]; the next
section concentrates on prototyping.

4 Prototyping with NEAT

The user can start developing ncatwarc by creating the outline consisting of chapters, sections and pages. Each
of these pages may be initially blank or contains only text, and its details can be decided later on. In order to
create and maintain the structure of ncatware, the user has access to the following operations:

go to the selected page
insert a new page. Here, the user selects the desired type of a page, for example a chaptcr, a section, or a
preview page. The user also selects, in the table of contents, the page after which the new page is to be
inserted
rename an existing page
delete an existing page. Entire sections, chapters or views can be deleted. The user has an option of
storing pages being removed on a shelf, or completely removing them
copy an existing page. Entire sections, or chapters can be copied within the same view, or between
different views

move an existing page. Entire sections, or chapters can be moved within the same view, or between
different views.

The above operations can be performed through the so-called Control Panel page. The author uses this panel
to create and modify the structure of neatware. Control Panel is not visible to the leaner, who can view the
Table of Contents page. Below, we describe both types of pages.

406

www.manaraa.com

4.1 Control Panel

The control panel consists of two parts. The field on the left-hand side shows the list of all pages which arc
currently present in ncatware, sec Figure 4.1.

0'80 Tertn.9.73.2

-Ab Out this- ciiii:se-W'ire--13- 18. _ . .
-About our Schoo1.14,168.10
-,How to tike noies.-44,119.10-
-.Preview to Preliminaries.11.75,10
s.Hardware,12.76.10
1,C-orniiuter Parti.1-5,80.1

s,Sottwaie ,14,79,10
.Operating system:13,77.14
,Programming Languagea.22,37,14
e.,0.0.10
s,Translation Noce:m.17.82.10
,Levels of Translation.18.83,17
-,Scanning.19,811.17
-.Parsing and Code e-iiii-rittien,0:015:17.---_
-,14braries.,21.,80
c0.0,10-
s,Introduction.to Programming.23,00.10_
-,Iiistory of_Modula,24,89.23
-,Program's tile dycle,29.94,23
-,Programs in MODDI.A.28.93,2

Modules 30 95 23

Fig. 4.1 Pan of Control Panel

Full Term

Each line in the above field contains a list. The first character in each line
shows the type of the corresponding page:

To insert a page. aeled In the tattle of contents
a page AFTER which a new page will be
inserted, and ciick on INSERT PACE button. To
delete, copy, move or rename a page. click the
corresponding button. Move the mouse over
buttons to get mote help.

view page
chapter page
section page
any other type of a page.

Additionally, the letter "e" indicates the end of the section. The second
item on the list on each line is the name of the page. (The remaining items
arc not relevant for this paper.)
The second half of the control panel, placed on the right-hand side is a set
of buttons to perform various operations, see Figure 4.2.

The top button, labeled FALL TERM in the above example, produces a
pop-up menu with the names of all existing views. This button can be
used to change the current view and show its contents in the field on the
left-hand side. For most operations, the user selects the page from the
list of all pages. For example, when the user wants to insert a new page,
he or she has to specify where the page is to be inserted, by selecting the
page after which the new page will be included. After selecting the
existing page, the user clicks the INSERT PAGE button, and NEAT
presents the buuons and fields shown in Figure 4.3.

Fig. 4.2 Another part of Control Panel.

Name of a page:

051

Page type
View
Chapter
Section
Preview
If
Question
Summary

Do it

Confirm

Iscroll I

Fig. 4.3 Inserting a new page.

The top field is used to type the name of a new page (OS I in the above
example). The user has also to specify the type of new page by selecting
one item in the PAGE TYPE box; by default it is a tutorial page. To
complete the inscrtion, the user can either hit RETURN whcn the text
pointer is in the NAME OF A PAGE box, or click on the DO IT button.
The user can cancel the operation by clicking the CANCEL button.
Clicking the CONFIRM button will allow the user to confirm whether or
not the operation is to be performed.

407
BEST COPY AVAILABLE

www.manaraa.com

When the copy, or move button is pressed, the user has to select the destination view, that is the view into
which the selected page, or pages will be copied or moved (even if the
destination page is the same as the current page); see for example Figure 4.4.
After the user selected the destination view, the left-hand side of the control
panel is split into two parts. The upper part of the screen is for the source view

Destination view
Beginner
Portability
Readability

Fig. 4.4 Copying a page.

and the lower part is for the destination view. The user selects the source page or chapter from the upper part
of the screen, and then selects a destination page in the lower part of the screen. For example, to copy chapter
el from view vl to the beginning of view v2, chapter el will be selected on the source screen, and view v2 will
be selected on the destination screen.

4.2 Table of Contents

A table of contents contains three windows, representing respectively the list of chapters, the list of sections in
the selected chapter and the list of pages in the selected section; see Figure 4.5.

Table of Contents in view
Gn Classroom

4Prehminaries
->ineut Output and Proce

Go >Preliminaries

About this courseware 4
llow to take notes .4Preview to Preliminaries
,>liardware
->Software
rglansiVipn Progss5
->introdudion to Programming

Contents

Classroom
1101116

011.11.1

>Translation PIOCC311

evels ot Translation
cannin

reing and Code Generation
ibraries

The user unfolds a chapter or a section
by double-clicking it. For each
window, there is a title bar, which is
also used to unfold the list of pages in
this window. For each window, there
is also a GO button which is used to
move to the selected page. The button
placed at the top, right corner labeled
OK, moves the user back to the page
where the table of contents icon was
pressed. The button to the left of this
button produces the pop-up menus
consisting of the names of all views.
The table of contents can be updatc.d
by the author after any operation that

Fig. 4.5 Table of contents.

modifies the structure of neatware; for example after inserting a new page

5 Implementation

We provide only a description of the basic data structures to support prototyping. For more details on the
implementation of NEAT, in particular the implementation of hypertext, see [MUL93b]; for the description of
OpenScript programming language, see (T0091j. The implementation of NEAT is based on a tree data
structure. There are two types of nodes in this tree:

definition node, which contains a name but does not have any reference to ToolBook pages
page node, which contains the name and idNumber of a ToolBook page.

The root of the tree is labeled NEAT (and we will refer to this tree as a NEAT tree); each child of the root
represents a single view. A subtree rooted at the view's node represents a structure of this view, that is its
chapters, sections, etc. Then, to copy a chapter from one view to another view, ,e perform a (deep) copy of the
subtree rooted at the source chapter.

The NEAT tree is implemented in a single text field, using the so-lied array implementation of a
tree. The line number in the field is referred to as the node number for the node stored in this line. A line in
the tcxt Field allocated for the node N is of the following form:

node number of the father, N (name of the node), list of children

408
BEST COPY AVAILABLE

www.manaraa.com

where the list of children consists of pairs of the form (name, node number) or (name, idNumber) depending
on whether thc node represents a definition or a Tool Book page.

The list of available lines in the field is maintained using two properties, representing respectively the
maximum number of lines in the field, and the free list, that is the list of lines that have been &allocated. The
maximum number of lines in the field is initialized to a certain value, and is extended whenever necessary.
This implementation effectively simulates an "open-ended" array. A single most important concept for all
navigation operations is that of a .node number. Having a node number available, we can find all necessary
information such as the page name, its father, or the list of children. Each neatware has a property whose value
is the current node number in the NEAT tree. Moving to another page requires not only the execution a
ToolBook instruction to go to this page, but also updating the node number. The basic operation used for
navigation is a single step in the depth-first traversal of the tree. This is how the user moves to the next page.
Moving to the previous page requires a single step in the reverse depth-first traversal.

Conclusion

Our initial experience with NEAT has been very encouraging. During the last tear, the author of this paper
was involved in the development of several ncatware. The most complete applicationsare:

SLADER, neatware on drug and alcohol abuse, see [MUL93c]
C INTERACTIVE, ncatwarc on teaching programming in C
MC, neatware on teaching introductory programming in Modula II, used for teaching first year students of
Computer Science at Acadia University in 1993/94.

Other neatware arc being designed.
During the development of SLADER, we have prototypvi large portions of the material, and then

presented it to the subject-area experts (specialists on drug and alcohol abuse). We have often used tools such
as margin notes, global notes, and hypertext to compile comments provided by these experts and to produce the
next version. We have also often modified the structure of neatware; for example the contents of the first
version of SLADER has been rearranged as a result of the review cOnducted by experts from the Counseling
Center. Without the support provided by NEAT, we would not be able to complete our work in the same time
period.

Acknowledernents

NEAT was originally designed in the summer of 1992 by Tomasz Mfildner from Acadia University, Canada,
and. Stefan Mayer and Claus Unger from Hagen University, Germany. Version 1.0 of NEAT was implemented
by T. Miildner in the fall of 1992, and Version 1.1 was implemented by the same author in the summer of
1993. Several students of Acadia University helped at the various stages of development of NEAT, in
particular R. Blondon, G. Poulen, Mark Rhodenizer and B. Santosa. C. van Veen implemented most of
SLADER neatware.

References

[MAUR Maurer, H., Tomek, I. Ilyper-G - A Survey. Report 284, IIG, Graz University of Technology, 1990.
[MER89) Mcrill, D., Li, Z. and Jones M. Limitations of First Generation Instructional Design. Educational

Technology, Jan. 1990.
[ALE91] Alessi, S. and Trollip S. Computer-Based Instruction. Second Edition. Prentice-Hall, 1991.
[MAY93) Mayer, S., Müldner, T. and Unger, C. NEAT: An iNtegrated Authoring Environment based upon

ToolBook. EDMEDIA'93, Orlando, Florida, June 1993.
IMUL93a] Mildner, T. NEATWARE Reference Manual. Technical Report, Acadia University, Sept. 1993.
[MUL93b) Milldner, T. NEAT Reference Manual. Technical Report, Acadia University, Sept. 1993.
[MUL93c] Miildner, T., Duncan, P., van Veen C. Hypermedia Presentation on Drugs and Alcohol Abioc,

Society for Applied Learning Technology, Multimedia'94, Orlando, Florida, Feb. 1994.
[T0091] Using ToolBook. Asymetrix Corporation, 1991.

409

